DC/DC Wandler

25 Watt

Seite 1/2

25 LPB 110 M24 P12

 $U_{E \text{ Nenn}} = 110 \text{ V}$ $U_{A \text{ Nenn}} = 24 \text{ V}$ $I_{A \text{ Nenn}} = 1.0 \text{ A}$

SYMBOL	PARAMETER	TESTBEDINGUNGEN	MIN	TYP	MAX	EINHEIT
EINGANG	a					
U _E	Eingangsspannungsbereich	Dauer	77,0		137,5	V
		t ≤ 0,1 sec.	66,0		77,0	V
		t ≤ 1,0 sec.	137,5		154	V
U _{E min}	Abschaltung		60,0		65,0	V
U _{E max}	Abschaltung		155		159	V
I _E	Eingangsstrom Leerlauf	$U_E = 154 \text{ V}, I_A = 0 \text{ A}$	15		20	mA
	Nennlast	$U_E = 110 \text{ V}, I_A = 1.0 \text{ A}$		0,25		Α
	Nennlast	$U_E = 66 \text{ V}, I_A = 1.0 \text{ A}$		0,41	0,45	Α
∫i² dt	Einschaltstromintegral	U _E = 154 V			10	A²s
I _{E max}	Einschaltstrom bei	I _A = 1,0 A			2.0	^
	$U_E \ge U_{E min}$	Δ t ≤ 1 ms			2,0	Α
	Eingangssicherung		E	xtern 2A M	Т	
C _E	Eingangskapazität Wandler			6	10	μF
	Externe Leitungsinduktivität				50	μH
	Verpolschutz	Längsdiode				
	Transientschutz BRB / RIA 12					

AUSGANG: Leistungsteil

P _{A Nenn}	Ausgangsdauerleistung	66 V ≤ U _E ≤ 154 V		25		W
U _{A Nenn}	Ausgangsspannung, werkseitig eingestellt	66 V ≤ U _E ≤ 154 V, I _A = I _{A Nenn}	+ 23,9	+ 24,0	+ 24,1	V
ΔU _A	Regelgenauigkeit statisch	$66 \text{ V} \le \text{U}_E \le 154 \text{ V}$ $0 \text{ A} \le \text{I}_A \le 1,0 \text{ A}$ $T_U = -40^{\circ}\text{C} \dots + 70^{\circ}\text{C} 10\text{Min} + 85^{\circ}\text{C}$	± 3,0 % U _{A Nenn}		V	
Δ U _{A dyn.}	Lastausregelung dynamisch	66 V ≤ U _E ≤ 154 V Pulslast: 40 - 90 - 40 % x I _A		± 100	± 400	mV
t _{dyn}	Ausregelzeit dynamisch	66 V ≤ U _E ≤ 50,4 V Pulslast: 50 - 100 - 50 % x I _A		1	2	ms
U _{A rms}	Restwelligkeit	66 V ≤ U _E ≤ 154 V Nennlast BW 300 kHz		50	150	mV
U _{A ss}	Spikes siehe Zeichnung	$66 \text{ V} \le \text{U}_\text{E} \le 154 \text{ V}$ Nennlast BW 20 MHz		100	400	mV
t _{ein}	Hochlaufzeit	66 V ≤ U_E ≤ 154 V, 0 A ≤ I_A ≤ 1,0 A ohmsche Last U_E ≥ U_E min	20		150	ms
t _{aus}	Netzausfallüberbrückungszeit	66 V ≤ U _E ≤ 154 V 0 A ≤ I _A ≤ 1,0 A	-	-	-	
	Überspannungsschutz	66 V ≤ U _E ≤ 154 V 0 A ≤ I _A ≤ 1,0 A	-	-	-	
I _A	Ausgangsstrom	66 V ≤ U _E ≤ 154 V	1,0			Α
	Grundlast	66 V ≤ U _E ≤ 154 V	-			Α
	Ausgangsstrombegrenzungseinsatz von I _A	66 V ≤ U _E ≤ 154 V	1,2			Α
I _{AK}	Ausgangskurzschlussstrom	Kurzschluss zwischen + U_A und - U_A 66 V $\leq U_E \leq$ 154 V			2,1	Α
C _A	Ausgangskapazität Wandler	Ausgang		330		μF

ALLGEMEINE DATEN

f	Schaltfrequenz	$U_E = 110 \text{ V}, I_A = 1,0 \text{ A}$		105		kHz
η	Wirkungsgrad	$P_A \ge 0.7 \times P_{A \text{ Nenn}}$	87	90		%
	MTBF (SN 29500)	$U_E = 110 \text{ V}, I_A = 1.0 \text{ A}, T_U = +40^{\circ}\text{C}$		750 000		h
	Leerlauf-, Kurzschlussfestigkeit		Dauer			

^{* -} Angabe: Strom fließt in das Gerät hinein, + Angabe: Strom fließt aus dem Gerät heraus

 Grau Elektronik GmbH
 Badhausweg 14
 Tel.: +49 0 72 48/92 58 0
 www.grau-elektronik.de
 Rev. 1.1

 76307 Karlsbad
 Fax: +49 0 72 48/92 58 10
 info@grau-elektronik.de
 29.09.08

Änderung und Irrtum vorbehalten. Erstelldatum: 15.09.2008

25 Watt

25 LPB 110 M24 P12

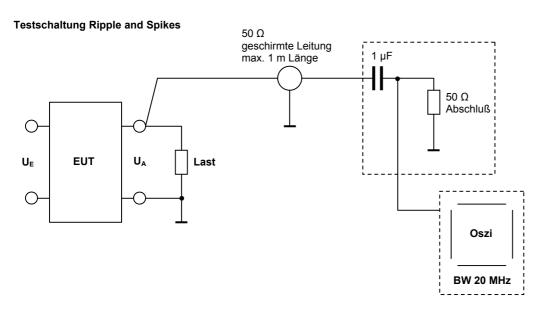
SYMBOL	PARAMETER	TESTBEDINGUNGEN	MIN	TYP	MAX	EINHEIT
SICHERH	EIT / ABMESSUNGEN					
	Kriechstrecken, Luftstrecken	Primär – Sekundär	2,0			mm
	·	Primär – Masse *	2,0			mm
		Sekundär – Masse *	1,0			mm
	Isolationsprüfspannung	Primär – Sekundär			2100	V_{DC}
	Stückprüfung:	Primär – Masse *			1500	V_{DC}
	Rampenfunktion 2 s - 3 s - 2 s	Sekundär – Masse *		entfällt		
	Anschlüsse	Eingang und Ausgang	,	Anschlusspin	ıs	
	Geräteschutzklasse, Schutzart			I, IP 00		
	Abmessungen	BxHxT	1	00 x 21,5 x 8	37	mm
	Befestigung	Leiterkartenmontage		6 x M 2,5		
	Gewicht			125		g

UMGEBUNGSBEDINGUNGEN

Tu	Arbeitstemperaturbereich	EN 50155 Klasse: Tx	- 40		+ 85	°C
T _{Lager}	Lagertemperaturbereich		- 40		+ 85	°C
	Kühlung		Konvektion			
	Feuchte	EN 50155, IEC 60571	75% jährliches Mittel, 95% 30 Tage			
	Vibration / Schock	IEC 61373, IEC 68-2-27, BN 411002 Kat. I 3 Schocks je Achse	50 m / s² , 30 ms			

EMV

Störaussendung **	Leitungsgebunden und gestrahlt	EN 50121 - 3 - 2: 2007
Störfestigkeit **	ESD	6 kV / 8 kV
-	EN 61000 - 4 - 2	Störverhalten - B -
	Hochfrequentes Feld	20 V / m 80 MHz 2,5 GHz
	EN 61000 - 4 - 3	Störverhalten - A -
	Burst	Level 3 asym., sym.
	EN 61000 - 4 - 4	Störverhalten - A -
	Surge	2 kV asym. / 1 kV sym.
	EN 61000 - 4 - 5	$R_i = 42 \Omega$
		Störverhalten - B -
	HF - Einströmung	10 V_{eff} , R_i = 150 $Ω$
	EN 61000 - 4 - 6	Störverhalten - A -


STANDARDS / NORMEN

	Angewandte	EN 50155: 2007	BN 411 002	EN 50124 - 1: 2006	EN 50121 - 3 - 2: 2007	IEC 60571
	Normen:	SN 29 500	prEN 50 121 - 1	prEN 50125 - 1	EN 60068 - 2 - 6, 227	EN 61000 - 4 - 26
		IEC 571	IEC 61373	EN 60721 - 3 - 5	EN 61373	EN 60529

BR3/RIA12 Surge

Technische Daten bezogen auf: -40° C \leq T_U \leq + 70° C, 77 V \leq U_E \leq 137,5 V, sofern nicht anders spezifiziert.

^{*} Masse = Halbleiter Al Kühlsteg **) im geschlossenen Gehäuse HF Feld: 80MHz – 1GHz 20V/m, 1400 MHz – 2100MHz 10V/m 2100MHz – 2500MHz 5V/m

Grau Elektronik GmbH

Badhausweg 14 76307 Karlsbad Tel.: +49 0 72 48/92 58 0 Fax: +49 0 72 48/92 58 10 www.grau-elektronik.de info@grau-elektronik.de Erstelldatum: 15.09.2008 Rev. 1.1 29.09.08

Änderung und Irrtum vorbehalten.